Ba2+ replaces Ca2+/calmodulin in the activation of protein phosphatases and in exocytosis of all major transmitters.
نویسندگان
چکیده
Exocytosis from nerve terminals is triggered by depolarization-evoked Ca2+ entry, which also activates calmodulin and stimulates protein phosphorylation. Ba2+ is believed to replace Ca2+ in triggering exocytosis without activation of calmodulin and can therefore be used to unravel aspects of presynaptic function. We have analysed the cellular actions of Ba2+ in relation to its effect on transmitter release from isolated nerve terminals. Barium evoked specific release of amino acid transmitters, catecholamines and neuropeptides (EC50 0.2-0.5 mM), similar to K-/Ca(2+)-evoked release both in extent and kinetics. Ba(2+)-and Ca(2+)-evoked release were not additive. In contrast to Ca2+, Ba2+ triggered release which was insensitive to trifluoperizine and hardly stimulated protein phosphorylation. These observations are in accordance with the ability of Ba2+ to replace Ca2+ in exocytosis without activating calmodulin. Nevertheless, calmodulin appears to be essential for regular (Ca(2+)-triggered) exocytosis, given its sensitivity to trifluoperizine. Both Ba(2+)-and Ca(2+)-evoked release were blocked by okadaic acid. Furthermore, anti-calcineurin antibodies decreased Ba(2+)-evoked release. In conclusion, Ba2+ replaces Ca2+/calmodulin in the release of the same transmitter pool. Calmodulin-dependent phosphorylation appears not to be essential for transmitter release. Instead, our data implicate both Ca(2+)-dependent and -independent dephosphorylation in the events prior to neurotransmitter exocytosis.
منابع مشابه
Calcium stimulates luteinizing-hormone (lutropin) exocytosis by a mechanism independent of protein kinase C.
Using permeabilized gonadotropes, we examined whether Ca2(+)-stimulated luteinizing-hormone (LH) exocytosis is mediated by the Ca2(+)-activated phospholipid-dependent protein kinase (protein kinase C). In the presence of high [Ca2+]free (pCa 5), alpha-toxin-permeabilized sheep gonadotropes secrete a burst of LH and then become refractory to maintained high [Ca2+]free. The protein kinase C activ...
متن کاملActivation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملA low-affinity Ca2+-dependent association of calmodulin with the Rab3A effector domain inversely correlates with insulin exocytosis.
The stimulus-response coupling pathway for glucose-regulated insulin secretion has implicated a rise in cytosolic [Ca2+]i as a key factor to induce insulin exocytosis. However, it is unclear how elevated [Ca2+]i communicates with the pancreatic beta-cell's exocytotic apparatus. As Rab3A is a model protein involved in regulated exocytosis, we have focused on its role in regulating insulin exocyt...
متن کاملRole of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of pharmacology
دوره 291 3 شماره
صفحات -
تاریخ انتشار 1995